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EXECUTIVE SUMMARY

ASSESSMENT AND RECOMMENDATIONS FOR
USING HIGH-RESOLUTION WEATHER
INFORMATION TO IMPROVE WINTER

MAINTENANCE OPERATIONS

Introduction

Winter weather hazards (snow, freezing rain, bridge deck icing,

etc.) often degrade road conditions and can result in substantial

increases in travel time and accident frequency without proper

treatment. The resources required for the Indiana Department of

Transportation’s (INDOT’s) winter maintenance operations are

currently estimated for the 2012–2013 season at over $30M. A

large number of decisions related to treatment must be made given

available information regarding the previous, current, and future

weather conditions that often contain considerable uncertainty. It

is expected that more accurate and precise weather information

will help to reduce the uncertainty related to winter weather,

resulting in improved decision-making and significant cost savings

for winter operations.

In this project, state-of-the-art weather information from radar

and meteorological data analysis systems were evaluated to

determine which would provide accurate high-resolution (,5 km

scale) information to assist with after-action review of previous

seasons as well as the analysis of current weather situations. In

addition, detailed weather forecasts were provided to INDOT by

Purdue students, utilizing a high-resolution numerical weather

prediction model. These forecasts were in the form of probabilistic

maps and timelines of winter weather hazards for each INDOT

district, along with a written discussion for each forecast. The

outcome of this research is a set of recommendations regarding

implementation of more detailed weather information related to

winter weather decision-making at INDOT. By working directly

with INDOT ‘‘customers,’’ a large number of Purdue meteorology

students have gained a rich learning experience by executing a

complete ‘‘forecast process.’’

Findings

Several state-of-the-art weather analyses were evaluated and

compared against surface weather station observations to

determine which system would generate weather hour estimates

that were both accurate and spatially detailed. The RTMA-based

analyses underestimated weather hours and also contained

analysis artifacts (circular patterns) that were unrealistic. The

NMQ-based analyses over-estimated weather hours, especially

within ,75 miles of a radar site, except for a narrow circle

centered at each NWS radar location. The NWS dual-pol radar

products were found to be immature with the precipitation type

classification algorithm containing several major errors. The

RAP-based weather hour analyses matched up well against the

surface station data and also provided more realistic spatial detail.

These analyses are recommended for use for after-action review

both for previous and upcoming winter seasons.

Daily winter weather forecasts were provided to INDOT by

Purdue students (under the supervision of Professor Baldwin). These

forecast products were evaluated and found to be skillful and

unbiased in predicting the occurrence of snow in particular. Purdue

students (and professors) gained a rich learning experience as a result

of their interaction with their INDOT ‘‘customers.’’ It is recom-

mended that Purdue continues to communicate this kind of weather

forecast information to INDOT for upcoming winter seasons.

High-resolution numerical weather prediction model output

was also incorporated into these experimental forecast products.

These numerical forecasts were found to be very useful by the

Purdue student forecasters. It is recommended that Purdue

continues to evaluate and develop numerical weather forecasts

for road weather purposes, working with INDOT’s weather

vendor to provide direct access to this alternate source of forecast

information, resulting in increased confidence and improved

decision-making for winter maintenance.

Implementation

New spatially detailed datasets for analyzing winter weather

hours across the state will be provided to INDOT in a form that

will allow easy implementation into INDOT operations. We

recommend that INDOT begin using the more detailed analysis

datasets to analyze the performance of maintenance operations

for upcoming and previous winter seasons. Numerical forecast

information from the high-resolution weather prediction model

run at Purdue should also be made accessible to INDOT via

MDSS. Student-generated weather forecasts designed for direct

use in INDOT winter maintenance decision-making will continue,

taking into account the forecast information available from

multiple sources.

One of the main results from the evaluation of Purdue’s

experimental weather forecasts was that these forecasts were, on

average, unbiased in terms of the frequency of occurrence of snow

at the district level. Unbiased forecasts, or forecasts that neither

over-forecast nor under-forecast the frequency of winter weather

conditions, should help to minimize unnecessary costs due to extra

man hours/overtime. In addition, it should improve analysis of

costs per lane mile per weather hour, allowing the potential for

more uniform (and cost-effective) operations statewide.
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1. INTRODUCTION

Winter weather hazards (for example: snow, freez-
ing rain, bridge deck icing) often degrade road
conditions and can result in substantial increases in
travel time and accident frequency (1) without proper
treatment. The resources required for INDOT’s winter
maintenance operations are currently estimated for the
2012–2013 season at over $30M. A large number of
decisions related to treatment must be made given
available information regarding the previous, current,
and future weather conditions that often contain
considerable uncertainty. It is expected that more
accurate and precise weather information will help to
reduce the uncertainty related to winter weather,
resulting in improved decision-making and significant
cost savings for winter operations. State-of-the-art
weather information from radar and meteorological
data analysis systems can provide high-resolution
(,5 km scale) information and help with after-action
review of previous seasons as well as the analysis of
current weather situations, producing improvements
in the winter treatment decision-making process as a
result.

The weather forecasting process can be described as a
system where information flows from one task to
another, reducing uncertainty about the current and
future weather conditions. These tasks can be generally
denoted as monitoring, forecasting, communication, and
evaluation. The task of monitoring weather conditions
involves collecting observations related to the current
and previous weather events and analyzing those
observations in order to generate a coherent picture
of the variables that best describe what is happening in
the weather as well as explaining why it is happening.
The forecasting task involves taking that coherent
picture of the current weather conditions and using
knowledge of how the atmosphere changes with time to
predict future weather conditions. This task usually
involves a variety of complex numerical models that
contain both systematic and random errors; therefore
an ensemble of possible future outcomes is typically
produced. A good forecaster will consider both the
most likely outcome as well as the range of potential
outcomes in generating their forecast. Once the fore-
caster has performed this analysis of the information,
they can communicate this information to their end
users and describe what will happen as well as explain
why it is going to happen. This is the communication
task; a good forecaster will effectively communicate
their understanding to their customers, the users of the
forecast information. The evaluation task involves
analyzing what actually happened once the forecast is
complete, as well as understanding why it happened.
Predictions will always contain errors and this ‘‘after-
action review’’ is the most effective way that a forecaster
can improve upon their forecasting process. The
information obtained during the evaluation task will
feed back into the forecasting process to improve future
predictions.

1.1 Problem Statement

Weather conditions vary considerably in time and
space across the state of Indiana. During the winter, it is
not unusual to find drastically different conditions over a
distance as small as a single Indiana county. The weather
information currently used by INDOT to estimate the
number of winter weather hours that impact each
segment of the state is lacking in spatial detail. These
spatially-smooth weather hour estimates make it very
difficult to accurately assess the costs of winter main-
tenance per lane mile, per weather hour. In addition,
INDOT staff utilizes a wide variety of sources of weather
forecasting information, but receive very little (if any)
information regarding the physical reasoning and degree
of uncertainty associated with those forecasts, thereby
increasing the difficulty in critical decision-making for
winter road maintenance. These problems can be
ameliorated via implementation of more detailed and
informative weather data products that are designed to
assist with winter weather decision-making at INDOT.

1.2 Objectives

Our research objective in this work was to provide
more detailed and specific forms of weather informa-
tion intended for monitoring and predicting winter
weather conditions, and to assess the quality of the
more detailed weather information. The outcome of
this research is a set of recommendations regarding
implementation of more detailed weather information
related to winter weather decision-making at INDOT.
By working directly with INDOT ‘‘customers,’’ a large
number of Purdue meteorology students have gained
a rich learning experience by executing a complete
‘‘forecast process.’’

1.3 Work Plan

In order to accomplish these objectives, during this
project we:

1. Developed alternative winter weather hour analysis data
sets using high-resolution (in both space and time) radar
data and analyses of meteorological observations. These
alternative data sets were developed in three stages:

- Stage I: utilizing surface-based weather observing sites

- Stage II: utilizing high-resolution gridded analyses of
weather variables

- Stage III: utilizing dual-polarimetric Doppler radar
data

2. Provided experimental winter weather forecast informa-
tion by developing a high-resolution weather prediction
system.

3. Evaluated the experimental weather hour analyses and
forecast information, resulting in a set of recommenda-
tions for implementation into INDOT winter mainte-
nance operations.

The results of this work will be presented in the
upcoming ‘‘Analysis of Data’’ sections of this report.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/22 1



Section 1 of the data analysis will present the Stage I–
III winter weather hour analyses. Section 2 will discuss
the experimental weather forecast information as well
as the evaluation of these products. The data analysis
will be followed by concluding sections, including
recommendations for implementation, and identifica-
tion of the project deliverables.

2. ANALYSIS OF DATA: SECTION 1—WINTER
WEATHER HOURS

2.1 ‘‘Stage I’’ Observation-Based Analyses of Winter
Weather for the 2010–2013 Seasons

2.1.1 Data Sources

2.1.1.1 2010–2012 Seasons. Analyses of winter
weather hours for the 2010–2012 seasons were
calculated using surface weather stations. These
surface observations were interpolated onto a grid
using ArcGIS software. Four criteria were used to
identify suitable weather station data to calculate
winter weather hours:

1. Hourly weather data with variables that can be used to
calculate or infer winter weather hazards (temperature,
precipitation, freezing fog, and blowing snow);

2. Spatial distribution of weather stations;

3. Temporal resolution (i.e., no missing data);

4. Data quality.

Using these criteria, three potential sources of hourly
weather observations were identified:

1. National Climatic Data Center (NCDC): Quality con-
trolled, hourly airport weather data collected by
Automated Surface Observing System (ASOS);

2. Meteorological Assimilation Data Ingest System
(MADIS): Supplemental weather data from lower com-
plexity but more numerous weather stations allowing for
better spatial distribution;

3. Indiana State Climate Office (IClimate): Hourly weather
observations from Purdue’s agricultural research stations
around the state.

NCDC data contain temperature, precipitation,
precipitation type, and visibility variables on an hourly
basis. MADIS and IClimate data only contain hourly
temperature and hourly precipitation variables. NCDC
data were used to calculate non-precipitating winter
weather hours (freezing fog and blowing snow). To
encompass all possible winter weather hours, a
temperature threshold was used: If a station reported
any measurable precipitation (0.01’’ or greater) and a
temperature at or below the temperature threshold
during an hour, that hour was counted as a winter
weather hour. A temperature threshold of 32uF was
selected. Interpolations of precipitating and non-
precipitating winter weather hours for a season were
done separately then combined. Table 2.1 summarizes
the number of point data by data source for each
season.

2.1.1.2 2013 Season. For the 2012–2013 season,
a frequency analysis of various types of wintry
precipitation was conducted using ASOS data from
NCDC and the Indiana State Climate Office. As with
the other seasons, data availability and continuity were
the main criteria in station selection. These point values
were interpolated onto a 20 km 6 20 km grid using the
IDW function in ArcMap, as described previously.
Table 2.2 shows the variables that were interpolated,
and Figure 2.1 shows the locations of the ASOS. The
different types of precipitation that were analyzed
follow the observed reports of present weather
conditions provided by the National Weather Service.
The National Weather Service uses visibility thresholds
to define different categories of snow intensity. Light
snow is reported when the visibility is greater than K
mile, moderate snow is reported with visibilities less
than or equal to K mile and greater than J mile, and
heavy snow is reported when the visibility is less than or
equal to J mile.

2.1.2 Methods

To ensure that data interpolation was performed
over the same area, a study area was defined around
Indiana. In the environmental variables of each
interpolation model, the study area was set as the
processing extent. Over Lake Michigan, there is a large
gap in coverage where no useable weather data exists.
To prevent this gap from interfering with the inter-
polation of areas near Lake Michigan, an interpolation
barrier was placed along the southern shore of the lake.
The study area and interpolation barrier are outline in
Figure 2.2.

To interpolate the point observations into gridded
data for each season, inverse distance weighting (IDW)
interpolation was used. This interpolation method uses
smoothing parameter and a search radius. Inverse
distance weighted interpolation is a linear interpolation
function that calculates a value at a grid point based on
an average of surrounding point values weighted by the
inverse of the distance from the point observation to the
grid point. A smoothing function, selected by the user,
controls the significance of point values farther away
from a grid point. The mathematical basis for the IDW

function in ArcMap is given by Zp~

P Z

dn

� �

P 1

dn

� � where Zp

is the analysis value at a grid point, Z is a point
observation, d is the distance from a point observation

TABLE 2.1
Number of Stations per winter season

Season NCDC MADIS IClimate Total

2009–2010 31 0 7 38

2010–2011 31 0 6 37

2011–2012 48 8 7 63

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/22



to Zp and n is a power function of d which acts as a

smoothing parameter (2). The user has control over the
number of point observations that are used in the
interpolation of a grid point value. A user can designate
a fixed number of points to be interpolated, or the user
can define a radius of influence in which only the points
that fall within the radius are used in interpolation.

For the 2010–2012 season analyses, the default
smoothing parameter (2.0) was used. A variable search
radius of the 12 nearest observations to a grid point was
used in interpolation. For the 2013 season analysis,
cross-validation was used to determine an optimal
smoothing parameter. The cross-validation tool in

ArcMap removes one data point at a time in the
analysis space, performs the IDW interpolation without
the data value and compares the interpolated value at
the location of the missing point value to the actual
point value. This process is continued for all data points
and for all possible smoothing parameter values (3).
Error in the predicted interpolation is quantified by
calculating root mean square error and is known as

TABLE 2.2
ASOS observations used in 2013 season interpolations

Precipitation Type Snow Snow Snow Ice Pellets Freezing Rain Freezing fog Blowing snow Rain

Intensity Light Moderate Heavy Any Any Any Any Any

Figure 2.1 Locations of ASOS used in interpolation.

Figure 2.2 Study area and interpolation barrier. The study
area was also set as the processing extent for the interpolations.
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root mean square prediction error (4). The cross-
validation method for interpolated ASOS observations
showed ideal smoothing parameter values between 1.0
and 3.1 (Table 2.3).

Since the number of ASOS stations is relatively few
(40) and considering the localized influence that Lake
Michigan can have on winter precipitation in northern
Indiana via lake-effect precipitation, a fixed search
radius was used to determine the number of point
values used in the interpolation of a grid point. To
determine an ideal search radius, an analysis of station
spacing was performed. The largest minimum distance
from one station to another was found to be ,100 km.
Therefore a 100 km search radius was used. This
ensured that there would be no areas of missing data
in the interpolation and that point data near Lake

Michigan would be used in interpolating grid points in
areas that are not influenced by the lake.

2.1.3 Results and Discussion

2.1.3.1 Stage I Analyses of the 2010–2012 Seasons.
Stage I winter weather hour analyses for the 2010 to
2012 seasons are shown in Figures 2.3, 2.4, and 2.5.
Comparing data from the four winter seasons,
variability was seen in the absolute magnitude of
winter weathers by each season. However, general
patterns were noted in the interpolations: Lowest values
of winter weather hours were found along the Ohio

TABLE 2.3
Ideal smoothing parameters calculated using cross-validation

Precipitation Type Light snow Moderate snow Heavy snow Ice pellets Freezing rain Freezing fog Blowing snow Rain

Smoothing Parameter 2.0 3.1 1.3 1.0 1.1 1.0 1.0 1.0

Figure 2.3 ‘‘Stage I’’ observation-based analysis for the 2010
winter season.

Figure 2.4 ‘‘Stage I’’ observation-based analysis of the
2011 season.
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River in southern Indiana, increasing to a maximum
near South Bend and near Lake Michigan in northern
Indiana. The average value of precipitating winter
weather hours was found to be about ten times greater
than non-precipitating winter weather hours in general,
making precipitating winter weather hours the do-
minant feature in the interpolation analysis. The 2011
season analysis saw the most winter weather hours
statewide, while the 2012 season analysis showed the
fewest numbers of winter weather hours. Stage I
analyses were created in a similar fashion to winter
weather hour estimates made for INDOT for previous
seasons, except with a larger number of surface weather
stations. Overall, incorporating extra stations into
winter weather hour calculation did not dramatically
alter the analyses when INDOT’s winter weather hour
estimates were informally compared with the Stage I
analyses. However, some enhancement and refinement
in the analyses were seen, especially in areas prone to

lake effect snow in northern Indiana. This enhanced
information can be useful in planning and evaluation
purposes for winter operations.

2.1.3.2 Stage I Analyses of the 2013 Season. Plots of
all interpolated results can be found in Figures 2.6
through 2.13 in order of their description in this section.
Plots of interpolated hours of light snowfall (snow
observed with visibility greater than K mile) showed
increasing hours of snow from south (,100 hours) to
north (,300 hours), with the highest hours of snowfall
near and downwind of Lake Michigan, stretching east
to the intersection of the Indiana, Michigan and Ohio
borders. Hours of moderate snow (visibility greater
than J mile and less than or equal to K mile) showed
less widespread lake effect influence, with a local

Figure 2.5 ‘‘Stage I’’ observation-based analysis of the
2012 season.

Figure 2.6 ‘‘Stage I’’ observation-based analysis of hours of
light snow for the 2013 season.
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maximum in hours (20–25 hours) of moderate snow
around South Bend, Indiana. Other local maxima (16–
20 hours) were noted near Muncie, Indiana, and
Evansville, Indiana. Total hours of heavy snow
reports (visibility less than or equal to J mile) were
few in general (total range of 0 to 6 hours); however,
the most hours of heavy snow were found in east
central Indiana, and did not exhibit an increase near
Lake Michigan. This would imply that ‘‘heavy’’ lake
effect snowfall did not occur during the winter; however
a more plausible explanation is that the ASOS network
spacing (avg. ASOS spacing is ,40 km) was too large
to observe these snow bands. The most hours of
rain were found in southern Indiana (250–300 hours)
and decreased with increasing latitude (widespread
, 100 hours in northern Indiana). No lake effect
enhancement of rain was noted. Freezing rain was
observed across the state, with the highest hours of
observed freezing rain (11–15) were observed in pockets

in northwest and south central Indiana, with the fewest
in northern and southwest Indiana. The most hours of
freezing fog were observed in far southwest Indiana.
This freezing fog was due to the melting of an extensive
snowpack deposited by a snowstorm that occurred on
26 December 2012 in that region. Interpolation results
for hours of ice pellets and hours of blowing snow are
presented with much uncertainty and skepticism.
Analyzing ASOS observations showed reports of very
few reports of ‘‘ice pellets’’ but several reports of
‘‘precipitation falling, solid.’’ Including this ‘‘unknown
solid precipitation’’ variable allowed plots of ice pellets
to be interpolated; however these values are most likely
unusable. A similar case exists with hours of blowing
snow. Only KCVG (Covington, Kentucky) reported any
hours of blowing snow during the entire winter, which
obviously created unrealistic interpolation results.

Despite the large grid spacing, much valuable in-
formation can be discerned from the figures, especially

Figure 2.7 ‘‘Stage I’’ observation-based analysis of hours of
moderate snow for the 2013 season.

Figure 2.8 ‘‘Stage I’’ observation-based analysis of hours of
heavy snow for the 2013 season.
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when comparing the distributions of light to moderate
to heavy snow. More analyses should be done to
compare this season to other seasons using ASOS.
Future work should include utilizing ASOS data to
create a climatology of winter weather phenomena. This
is complicated by a lack of continuous hourly observa-
tions for many ASOS stations.

2.2 ‘‘Stage II’’ Estimates of Winter Weather Hours for
2010–2013 Seasons

2.2.1 Data Sources and Methods

As a part of the monitoring portion of this project,
winter weather hours were also estimated using high-
resolution gridded analyses of weather variables for the
past three winter seasons (2010–2013). Three separate
datasets were used to compile these analyses:

1. Rapid Refresh (RAP)/Rapid Update Cycle (RUC) fore-

cast systems

2. Real-Time Mesoscale Analysis (RTMA)

3. National Mosaic and Multi-Sensor QPE (NMQ) System

In order to maintain comparability between seasons,
a winter season has been arbitrarily defined as the time
period between November 1 and April 1. In addition to
seasonal weather hour estimates, monthly and daily
accumulations were also computed. A day was defined
as the 24 hour period between 06–06 UTC (midnight–
midnight CST) on two consecutive days. A more
detailed description of the data and methods follow in
the subsequent sections, while an intercomparison of
results will be discussed in a later section. All data with
the exception of NMQ were obtained from the
National Climatic Data Center (NCDC), while NMQ
was obtained from the National Severe Storms
Laboratory (NSSL).

Figure 2.9 ‘‘Stage I’’ observation-based analysis of hours of
freezing fog for the 2013 season.

Figure 2.10 ‘‘Stage I’’ observation-based analysis of hours of
freezing rain for the 2013 season.
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2.2.1.1 Rapid Refresh/Rapid Update Cycle. The Rapid
Refresh (RAP) is an hourly, short-range (18 hour
forecasts) weather model and data assimilation system
was operationally implemented at the National Centers
for Environmental Prediction (NCEP) on 1 May 2012.
The RAP replaced the previous Rapid Update Cycle
(RUC) forecast system. The RAP has a horizontal
grid spacing of approximately 13 km with 50 levels
in the vertical. Because new forecasts and analyses
are available every hour, the RAP lends itself
nicely for the use of estimating hourly weather con-
ditions. Contained within the RAP dataset are four
categorical precipitation type variables—rain, snow,
ice pellets, and freezing—that will be used to estimate
winter weather hours. These classifications are based
up on a series of logic that involve vertical thermal
and moisture profiles and information derived from
the cloud microphysics parameterization. However,
the classifications are not mutually exclusive; that is,
more than one precipitation type designation may
exist for the same grid point location. A winter

weather hour was counted if one of these clas-
sifications were designated while at the same
time the 1-hour forecasted precipitation amount
exceeded 0.1 mm. This criterion was introduced in
order to account for the high bias of estimated rain
and snow hours (compared to other data source
estimations) the occasions when the model was not
producing a reasonable amount of accumulated
precipitation and yet. For example, Figure 2.14a and
2.14b compares the 2012–2013 snow hours with and
without the precipitation accumulation threshold,
respectively.

For the 2010–2011 season, the 13 km RUC data was
not available, and thus the coarser 20 km data was
utilized. Seasonal estimates of winter weather hours for
the past three winter seasons were compiled by
summing the number of occurrences of each preci-
pitation type for each hour between 06Z November
1 and 06Z April 1 where the 1-hour forecast preci-
pitation amount exceeded 0.1 mm. Monthly and
daily accumulations were also computed.

Figure 2.11 ‘‘Stage I’’ observation-based analysis of hours of
rain for the 2013 season.

Figure 2.12 ‘‘Stage I’’ observation-based analysis of hours of
blowing snow for the 2013 season.
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2.2.1.2 Real-Time Mesoscale Analysis (RTMA). The
Real-Time Mesoscale Analysis (RTMA) dataset is a
high-resolution (,5 km grid spacing) gridded meteo-
rological analysis of sensible weather variables—2 m
temperature, 2 m dew point temperature, 2 m specific
humidity, 10 m wind, surface pressure, and hourly
precipitation estimates (5). RTMA quantitative precipi-
tation estimates (QPE) are obtained from the 4 km
gridded NCEP Stage II hourly precipitation estimates
interpolated to the 5 km RTMA grid. Stage II QPE
utilizes a combination of hourly radar and rain gauge
estimated rainfall accumulation to arrive at a multi-
sensor precipitation approximation (6).

As categorical precipitation type is not an available
variable in this dataset, a different approach to
estimate winter weather hours, based solely upon the
available meteorological variables, was needed. With
only near surface variables available, precipitation
type is somewhat trickier to infer, and as a result, only

frozen and liquid precipitation were designated as
precipitation types. Frozen precipitation was esti-
mated to occur if:

1. precipitation estimate . 0 mm

2. 2 m temperature , 2uC
3. wet-bulb temperature , 0uC

Otherwise, if the temperature and wet-bulb tempera-
ture criteria were not met, yet there was measurable
precipitation, liquid precipitation was recorded. Daily,
monthly, and seasonal tabulations were created based
upon these criteria.

2.2.1.3 National Mosaic and Multi-Sensor QPE
(NMQ) System. Another high-resolution dataset
available is the National Mosaic and Multi-Sensor
QPE (NMQ) System produced by the National Severe
Storms Lab (NSSL). The NMQ system is multi-sensor
dataset that ingests information from 170 weather
radars, rain gauge data, and RUC/RAP model analysis
fields (7). NMQ provides 2D and 3D radar mosaics
on a 0.01u 6 0.01u latitude/longitude grid (,1 km 6
1 km). Data incorporated from rain gauges and model
analyses allow for the NMQ system to provide products
regarding precipitation estimates and precipitation type
classification. In regard to the task at hand, the primary
focus was upon the gridded precipitation type product.
The five precipitation types identified by NMQ—
stratiform rain, convective rain, warm rain, hail, and
snow—are derived from a series of logic based upon
thermal and moisture variables obtained from the
RUC/RAP analyses. Snow is the determined pre-
cipitation type if the hybrid scan reflectivity (i.e., the
reflectivity values of the lowest radar elevation scan):

1. ,5 dBZ and surface temperature , 2uC
2. ,10 dBZ, surface temperature , 2uC, and surface wet-

bulb temperature , 0uC.

Daily, monthly, and seasonal tabulations were
created using this snow designation from hourly NMQ
data, but only for the 2012–2013 season at this time.

2.2.2 Missing Data

The total number of hours possible for the 2010–
2011 and 2012–2013 seasons was 3625 hours each, but
because 2012 was a leap year, the total possible hours
was 3649. Unfortunately, a number of hourly data files
were missing for each season and across each of the
three datasets as shown in Table 2.4. Ultimately, the
data for the 2012–2013 was the most reliable with the
fewest number of missing files. For both RAP/RUC
and RTMA, the number of missing files from the
NCDC archive increased markedly for each past
season. As a result, estimates for these seasons may
not be truly representative. A list of the dates that are
missing files for each data set in each season may be
found in Appendix A.

Figure 2.13 ‘‘Stage I’’ observation-based analysis of hours of
ice pellets for the 2013 season.
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2.2.2.1 Web Portal. Images for daily, monthly, and
seasonal totals are available for viewing through a web
interface at the following URLs:

1. Daily: http://weather.eaps.purdue.edu/cgi-bin/daily_

winter_wx_hours.py

2. Monthly: http://weather.eaps.purdue.edu/cgi-bin/monthly_

winter_wx_hours.py

3. Seasonal: http://weather.eaps.purdue.edu/cgi-bin/season_

winter_wx_hours.py

2.3 ‘‘Stage III’’ Estimates of Winter Weather Hours for
the 2013 Season

The National Weather Service Weather Surveillance
Radar-1988 Doppler (WSR-88D) radar network
recently completed an upgrade to dual-polarimetric
technology. Dual-polarization radar, hereafter referred
to as ‘‘dual-pol,’’ unlike the conventional WSR-88D
radars that emit only horizontally oriented pulses,
transmit both horizontally and vertically oriented

pulses. As such, dual-pol radar provides an advantage
over conventional single polarization radar in that it
can provide more useful information about targets, in
particular the size, shape, and concentration of which
may be used to deduce hydrometeor type. In addition,
it may also aid in the discrimination between meteor-
ological and non-meteorological targets. There are
three dual-pol variables available in the raw level II
data: differential reflectivity (ZDR), correlation coeffi-
cient (rHV), and differential propagation phase shift
(WDP).

Differential reflectivity is simply the ratio between
the linear reflectivity factor (z) returned for both the
horizontal (zH) and vertical (zV) polarized signals, or
when ZH and ZV are in logarithmic units (that is,
measured in units of dBZ rather than mm6 m21), then
ZDR (in units of dB) is simply the difference between ZH

and ZV (8). Differential reflectivity depends upon the
aspect ratio of the targets, and therefore can offer
information regarding shape of hydrometeors.

Correlation coefficient is a measure of the correlation
between the horizontal and vertical polarized signals.
This variable can also be a good discriminator between
meteorological and non-meteorological scatterers. For
example, where rHV is less than 0.8, the horizontal and
vertical oriented pulse returns behave differently from
pulse to pulse and likely are representative of complex
scattering due to non-meteorological targets such as
birds and insects. Another dual-polarization variable is
the total differential phase shift (WDP), often referred to

Figure 2.14 RAP accumulated snow hours for 2012–2013 (a) without precipitation threshold and (b) with
precipitation threshold.

TABLE 2.4
Number of missing data files (hours) for each season

Data Source 2010–2011 2011–2012 2012–2013

RAP/RUC 233 115 8

RTMA 115 48 5

NMQ N/A N/A 15
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simply as differential phase. Differential phase relates the
phase shift between the horizontally and vertically oriented
beams as they travel through some medium, typically
hydrometeors. The magnitude of WDP, measured in
degrees, depends upon several factors such as hydro-
meteor size, concentration, and orientation (8); because
of these differences, phase shifting may not occur
equally for the horizontal and vertical beam pulses.

Differential phase is a range cumulative quantity (9),
and therefore depends upon the distance from the
radar. As a result, WDP in itself is difficult to interpret
and thus is not that useful of a product (8). Rather, the
range derivative of the WDP profile may be taken to
determine the meteorologically significant areas where
the phase shifting is occurring. This derived quantity is
termed the specific differential phase (KDP) is meant to
isolate where in the WDP profile the phase shifting
occurs, and it is a more useful product, particularly in
the estimation of rainfall rates.

From these variables, several algorithms have been
developed for the purpose of providing improved estimates
of precipitation rates and precipitation type classification.
The purpose of this task was to utilize the information
provided by dual-pol radar to provide winter weather hour
estimates for the 2012–2013 season. Efforts to accomplish
this are underway, and the following will describe the work
that has been done thus far toward this goal.

2.3.1 Data Format and Visualization

Level II radar data is compressed and received in
MSG31 binary data format in near real-time at Purdue
via Unidata’s Local Data Manager (LDM) software.
Archived radar data may be obtained from the
National Climatic Data Center (NCDC). The transi-
tion from MSG1 to MSG31 format was necessitated by
the need to include Super Resolution (0.5u 6 0.25 km)
(10) and dual-polarization data in the real-time Level II
distribution of data. The radar data was converted
from MSG31 format to Network Common Data
Format (NetCDF) CF-radial format using the
NetCDF-Java library (Unidata; http://www.unidata.
ucar.edu/software/netcdf-java/). Data within the file
are stored in the native radar coordinate system; a local
spherical coordinate system represented by the radial
azimuth(a), elevation angle (he), and range distance (r)
with respect to the radar’s central location.

The simplest means by which to visualize radar data
involves a spherical to Cartesian coordinate transforma-
tion. However, the process of plotting radar data upon a
map is not as straightforward, however. In order to do
so, each radial range gate must be geo-referenced with a
corresponding latitude and longitude. To accomplish
this task, first each location will need to have a
corresponding ground distance and height above ground
level variable. These values are computed from the native
radial distance and elevation values in addition to the
latitude and altitude of the radar location.

Following (11), the radial radar beams are assumed
to follow the 4/3 effective earth radius model:

h~ r2z khað Þ2z2rkha sin hh

h i1
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where h is the height above ground level, s is ground
distance, a is the equatorial radius of the earth
(,6370 km), r is the radial distance, H0 is the height
of the radar platform.

With this information, the Vincenty formula (12) for
a direct geodetic transform may be used to find the
latitude and longitude coordinate for each radial gate
location in each sweep. In this application of the
Vincenty formula, all that is needed to calculate the
latitude and longitude of each gate is the latitude and
longitude of the origin (i.e., radar location), the azimuth
angle, and the ground distance. The full iterative
formula is presented in Appendix B.

2.3.2 Example: 5–6 March 2013

As aforementioned, several algorithms have been
developed for the purpose of providing improved
estimates of precipitation rates and precipitation type
classification, many of which are available as Level-III
radar products. This section will focus upon the
performance of the hydrometeor classification algo-
rithm (HCA), an algorithm that uses fuzzy logic to
classify radar echoes into ten separate categories based
upon information from dual-pol variables (13). The
ten classes are as follows: ground clutter/anomalous
propagation, biological scatterers, dry aggregated
snow, wet snow, ice crystals, Graupel, ‘‘big drops,’’
light/moderate rain, heavy rain, rain/hail. To evaluate
HCA, surface observations and reports from the
Meteorological Phenomena Identification Near the
Ground (mPING) project will serve as the best estimate
of ground ‘‘truth.’’ mPING allows for the public to
report weather information, such as precipitation type,
via a smart phone application. Options for precipita-
tion type include: none, drizzle, freezing drizzle, rain,
freezing rain, ice pellets/sleet, snow, mixed rain and
snow, mixed rain and ice pellets, mixed ice pellets and
snow, and hail. While these categories do not line up
with the HCA classifications, they can at least provide
insight as to whether frozen or liquid precipitation is
occurring at the surface.

The storm of 5–6 March 2013 produced several
different precipitation types across central and northern
Indiana, therefore serving as an excellent case to
examine the ability of the HCA algorithm to classify
winter precipitation. At 12 UTC 5 March, scattered
light rain showers are found northern Indiana, but by
afternoon began to transition to a wintry mix of ice
pellets and sleet, from south to north, before changing

(3)
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over to all snow by 22Z. By 12Z the next day, 5–6
inches of wet snow had fallen across central Indiana
with higher amounts of 8–10 inches further north. A
24 hour animation of Indianapolis radar variables,
from the period 12Z 5 March to 12Z 6 March, may be
viewed in the following links:

N Base reflectivity (super-resolution): http://weather.eaps.
purdue.edu/INDOT/mar_5_6/superres_loop.html

N Differential reflectivity: http://weather.eaps.purdue.edu/
INDOT/mar_5_6/zdr_loop.html

N Correlation coefficient: http://weather.eaps.purdue.edu/
INDOT/mar_5_6/cc_loop.html

N Specific differential phase: http://weather.eaps.purdue.
edu/INDOT/mar_5_6/kdp_loop.html

N Hydrometeor Classification Algorithm: http://weather.
eaps.purdue.edu/INDOT/mar_5_6/hca_loop.html

For the sake of brevity, much of the discussion will
revolve around the performance of the HCA product.
The concentric light green circle around the radar
location (designated as light/moderate rain) present on
many occasions in the HCA images is due to the fact
that the current HCA algorithm does not account for
refreezing of hydrometeors below the melting level, a
major shortcoming of the algorithm (14). Precipitation
can refreeze below the melting layer and also very near
or at the surface (e.g. freezing rain). For example,
Figure 2.15b shows the HCA classification with
mPING reports valid within the last 15 minutes for
2147Z on 5 March 2013 with the corresponding base
reflectivity in Figure 2.15a. As can be seen, the light
green circle depicts light to moderate rain, and yet
mPING reports show numerous reports of wet snow,
snow, and a rain/snow mix in the same areas. In these
scenarios where precipitation refreezes below the
melting layer, (14) notes that the HCA algorithm will

most ‘‘certainly fail’’ and is not a good candidate, in its
current form, to aid in precipitation type classification
near the surface. As a result, the best course of action
would be to combine radar data with environmental
data, perhaps vertical profiles of thermal and moisture
information from RAP analyses, to improve precipita-
tion type classification.

2.3.3 Work Plan for Developing Radar-Based Estimate
of Winter Weather Hours for 2012–2013

To complete the task as outlined in the work plan, in
order to estimate winter weather hours from dual-pol
radar data, the next major step will be to transform
the data on to a regular latitude/longitude Cartesian
grid, similar to that of the NMQ data. As a result,
aggregations based upon standard grids will be much
more straightforward. The next hurdle will revolve
around obtaining the large amount of Level-II data for
the entire season.

2.4 Evaluation of Stage I–III Winter Weather Hours

With the completion of Stage I–III winter weather
analyses, a comparison of winter weather hour
estimates may now be performed in order to evaluate
their ability to accurately represent the occurrence of
winter precipitation, snow in particular. At this time,
we have not yet pursued the question of whether these
estimates were able to more precisely define the costs
associated with road treatment for winter weather
operations, though this effort will be forthcoming. An
inter-comparison of estimates for seasonal, monthly,
and daily estimates of snow hours from each data set
will now be discussed.

Figure 2.15 Indianapolis (KIND) (a) base reflectivity and (b) HCA with mPING reports data for 2147Z 5 March 2013.
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2.4.1 Seasonal

2.4.1.1 2012–2013 Winter Season. Seasonal estimates
of winter weather hours, an inter-comparison of results
from the 2012–2013 winter season will be discussed.
Figure 16a–d illustrates estimates of snow hours from
NMQ, RAP, RTMA, and Stage I, respectively. A
cursory examination would suggest that the NMQ

results closely resemble those of the Stage I estimates,
both spatially and in magnitude, with enhanced snow
hours in and around the Indianapolis metropolitan area
and in the northeast quadrant of the state. The estimates
based on RAP somewhat concur with NMQ and Stage
I, at least in the sense that it also depicts an increase in
snow hours from southwest to northeast. Estimates
using RTMA data appear as an outlier, however. All

Figure 2.16 Seasonal snow hour estimates for 2012–2013 as estimated by (a) NMQ (b) RAP (c) RTMA and (d) Stage I.
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datasets seem to depict an enhanced occurrence of snow
hours in the northern tier of Indiana counties,
particularly in the South Bend, IN region presumably
due to the occurrence of lake-effect snowfall.

To produce a more useful map to highlight spatial
differences, we interpolated the Stage I ASOS observa-
tions onto the native grid of each dataset using a
Delaunay triangulation. This allows for the one-to-one
difference maps to be generated. Results of this
differencing (Stage I minus the results from the
respective data set) are shown in Figure 2.17a–c.

Looking at the data more quantitatively, we are
reaffirmed that NMQ and RAP appear to be the most
similar in their estimates of seasonal snow hours. For
example, the range of values (from minimum to
maximum), mean, median, and standard deviation of
Indiana snow weather hours for each data set listed in
Table 2.5. From these values, we can deduce that NMQ
and RAP seem to display magnitude of snow hours that
are most comparable, even though from a visual sense
the NMQ and Stage I estimate appear most similar in
terms of spatial distribution.

Figure 2.17 Seasonal difference between ASOS observations (interpolated on to native grid using Delaunay triangulation) and
estimates from (a) NMQ (b) RAP and (c) RTMA.
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It is clearly evident from both a qualitative and
quantitative perspective that RTMA estimates are
certainly under-estimating the occurrence of estimated
snow hours as compared to the other data sets. It was
determined that this outcome was not the result of the
RTMA methodology per se, but rather that the RTMA
weather hours are heavily dependent upon the multi-
sensor NCEP Stage II precipitation estimates. As can
be seen, the circular patterns evident in Figure 2.16c
visibly correspond to the overall seasonal estimation of
precipitation (mm) shown in Figure 2.18. These circular
patterns can be found in the original NCEP Stage II
precipitation analyses, likely an artifact of the merging
of rain gauge data with radar-based precipitation
estimates. A constant radius of influence can be seen
in the NCEP Stage II precipitation analyses in the
vicinity of isolate rain gauge reports.

Table 2.6 depicts the estimated number of snow
hours for each station location based upon the actual
raw station observations and the closest grid point to
that location for each of the data sets. Also shown, in
parentheses, are the deviations of the point location
estimates compared to the raw station observation
estimates. Undoubtedly, the Stage I estimates most
closely align with the actual station observation
estimates, as Stage I estimates are interpolated from
these observations. NMQ overestimates the occurrence
of snow hours for most station locations, with the

exception for Indianapolis (KIND), Terre Haute
(KHUF), and Fort Wayne (KFWA). A likely explana-
tion for the significant underestimation at KIND is the
collocation of the observation site and the radar site. As
noticeable in Figure 2.16a, in the location of the radar
sites, a small circular location illustrates small values of
snow hours compared to the areas surrounding it. This
is a result of the radar’s ‘‘cone of silence,’’ essentially the
diameter around the radar which cannot be sampled by

TABLE 2.5
Range, mean, median, and standard deviation of estimated snow
hours for Indiana’s 2012–2013 winter season for each dataset

Data Range Mean Median Std. Dev.

NMQ 83–481 213.88 216 51.91

RAP 90–426 208.81 206 62.47

RTMA 64–186 119.59 118 20.59

Stage I

(ASOS)

65–369 200.59 196 66.08

TABLE 2.6
Comparison of snow weather hours between raw station observations and the closest grid point in NMQ, RAP, RTMA, and Stage
I estimates*

Station Station Obs. NMQ RAP RTMA Stage I

West Lafayette (KLAF) 171 209 (+38) 186 (+15) 98 (273) 171(0)

Indianapolis (KIND) 313 137*/248

(2176/265)

181 (2132) 136 (2177) 302 (211)

Terre Haute (KHUF) 197 182 (215) 142 (255) 102 (295) 188 (29)

Fort Wayne (KFWA) 377 244 (2133) 254 (2123) 133 (2244) 369 (28)

South Bend (KSBN) 353 382 (+29) 326 (227) 172 (2181) 330 (223)

Evansville (KEVV) 113 162 (+49) 104 (29) 107 (26) 102 (211)

Bloomington (KBMG) 152 207 (+55) 191 (+39) 117 (235) 149 (23)

Muncie (KMIE) 210 215 (+5) 206 (24) 114 (296) 214 (+4)

*Shown in parentheses are the deviations (+/2) from the corresponding station observation values.

NOTE: The KIND location falls within the radar’s ‘‘cone of silence,’’ and as evidenced by Figure 2.16a, the area surrounding the radar location

depicts reduced estimates of snow hours. By moving 0.1u longitude further to the west (along the same parallel), a marked increase in the snow hour

estimate is seen (shown after slash).

Figure 2.18 RTMA accumulated precipitation (mm) for the
2012–2013 season.
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the radar beam. This result is not surprising, as NMQ
precipitation type is based upon the available radar
data. By shifting 0.1u further west in longitude, the
NMQ estimate increases from 137 to 248 hours; this is
still lower than the observation site estimate, however
the gap between the two measures has been reduced
significantly.

Once again, these data confirm that RTMA is
underestimating the number of observed snow hours,
particularly in central and northeastern Indiana.

2.4.1.2 2011–2012 Winter Season. See Figures 2.19
and 2.20 for the 2011–2012 winter season totals.

2.4.1.3 2010–2011 Winter Season. See Figures 2.21
and 2.22 for the 2010–2011 winter season totals.

2.4.2 Monthly

See Figures 2.23 through 2.27 for the monthly totals
for 2012–2013.

Figure 2.19 Seasonal snow hour estimates for 2011–2012 as estimated by (a) RUC (b) RTMA and (c) Stage I.
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Figure 2.20 Seasonal difference between ASOS observations (interpolated on to native grid using Delaunay triangulation)
estimates from (a) RUC and (b) RTMA.
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Figure 2.21 Seasonal snow hour estimates for 2010–2011 as estimated by (a) RAP (b) RTMA and (c) Stage I.
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Figure 2.22 Seasonal difference between ASOS observations (interpolated on to native grid using Delaunay triangulation)
estimates from (a) RUC and (b) RTMA.
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Figure 2.23 November monthly snow hour estimates for 2012–2013 as estimated by (a) NMQ (b) RAP (c) RTMA.
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Figure 2.24 December monthly snow hour estimates for 2012–2013 as estimated by (a) NMQ (b) RAP (c) RTMA.
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Figure 2.25 January monthly snow hour estimates for 2012–2013 as estimated by (a) NMQ (b) RAP (c) RTMA.
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Figure 2.26 February monthly snow hour estimates for 2012–2013 as estimated by (a) NMQ (b) RAP (c) RTMA.
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Figure 2.27 March monthly snow hour estimates for 2012–2013 as estimated by (a) NMQ (b) RAP (c) RTMA.
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3. ANALYSIS OF DATA: SECTION 2—WINTER
WEATHER FORECASTS AND
FORECAST EVALUATION

3.1 Experimental Winter Weather Forecasts

Purdue meteorology students (at both the under-
graduate and graduate level) helped to design and
produce experimental weather forecasts for INDOT
during the 2012–2013 winter season. During the
Fall 2012 and Spring 2013 semesters, Prof. Baldwin
organized his Team Weather Forecasting and
Mesoscale Forecasting classes at Purdue to design the
forecast products, issue the daily forecasts, and evaluate
these experimental forecasts. In the late fall, Prof.
Baldwin and his students visited each INDOT district
and gave a presentation to INDOT staff regarding
winter weather forecasting and the physical processes
that produce snow and other types of winter hazards.
By communicating directly with INDOT staff through
these district-level meetings, the Purdue students were
able to design forecast products to benefit their
‘‘customers.’’ In addition, the training material was
intended to provide information to staff fighting snow
and ice to better understand the cloud and precipitation
processes. This training should prove most beneficial
when the actual observed weather is found to be
significantly different than the predicted weather. For
example, it is not unusual for a winter storm to contain
a wide variety of precipitation types, from rain to sleet
to snow, changing over distances as short as the width
of a county. The temperatures aloft are a key factor in
determining the type of precipitation reaching the
ground. Often, a layer of warm air is found above the
ground that will melt snow as it falls through the layer.
Understanding of how these physical processes of
melting and freezing affect the precipitation as it falls
from the cloud to the ground will allow staff to react
faster and more effectively when an ‘‘unexpected’’
change in the weather occurs at their location.

The daily winter weather forecasts consisted of a
state-wide map for the probability of winter weather
covering the midnight-midnight period for the next day.
Three probability levels were typically used: 30, 60, and
90%. Additional maps were provided for more
significant weather events to communicate detailed
aspects of the upcoming storm. These included maps of
total snowfall, timing of the beginning of the precipita-
tion, locations of freezing rain, etc. In addition to these
state-wide probability maps, district-specific forecast
‘‘timelines’’ were provided to indicate the starting and
ending times of expected hazards. These hazards
included snow, rain, freezing rain, blowing snow, and
icing (frost, freezing fog). Different hazards were
indicated with different color codes, allowing the
forecast to show a change from one hazard to another,
or multiple weather types occurring at the same time. A
written weather hazard discussion was provided for
each district to go along with each timeline. More
detailed information was provided in the written
discussion, such as specifying which counties were

more likely to experience the winter weather, the level
of uncertainty in the forecast, and alternate scenarios
possible for the upcoming weather event. Finally, an
extended forecast was provided to go beyond the next
day, discussing the expected weather conditions for the
upcoming seven day period. The forecast products were
communicated to INDOT via a web page (www.
extremeweathermakers.com/indot-forecasts) which was
updated daily in the early afternoon, and again in the
late evening whenever the situation called for an update
to the forecast. Routine weather forecasting began on
November 1, 2012 and continued daily throughout the
winter, until ending on April 13, 2013.

An example of these forecast products is provided for
the case of the winter storm event of March 5–6, 2013.
This event was discussed previously in section 1.3
regarding the performance of the HCA algorithm.
The state-wide probability of winter weather map
(Figure 3.1) was issued one day earlier (March 4).
This indicated a strong probability of winter weather
across the northern half of the state, with probabilities
decreasing further south. The district-level timelines
(Figure 3.2) indicate that changing weather conditions
were expected throughout the day, with freezing rain
conditions possible early across central and northern
districts. The central and southern districts showed rain
changing to snow with different timings during the
course of the day/evening. The written forecast discus-
sion for each district went into more detail regarding
the timing of the various types of precipitation, when
significant snowfall was expected, and the distribution
of snowfall totals across each district. Discussion
regarding the possibility for freezing rain during the
early morning hours in central Indiana, along with the
expected amounts of glaze icing, was also included in
the written forecast. Finally, a statewide map of
expected snowfall amounts (Figure 3.3) also included
some additional text highlighting the changing nature
of the expected precipitation during this event.

These forecasts utilized numerical weather predic-
tions that are generated by Prof. Baldwin’s research
group, using the high-resolution Weather Research and
Forecasting (WRF) model which was executed on
Purdue’s high-performance computing resources twice
daily. The Purdue WRF model was run with a grid
spacing of 6 km and a domain that covered roughly the
eastern 2/3 of the U.S. Forecasts were generated out to
3.5 days into the future, with variables available hourly
during the forecast period. Weather-related variables
were routinely mapped over the full domain as well as a
zoomed view over Indiana. Parameters such as surface
temperature, dew point depression, wind, and simu-
lated radar reflectivity were visualized. The numerical
forecasts of surface temperature resulted from the
WRF model coupling of the NOAH land surface
model (15) with the atmospheric components of the
WRF. The NOAH land surface model classifies the
type of surface at each location within the model
domain using a USGS land use database. There are 23
different land surface types available, ranging from
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dense forest, agricultural, to urban area. Given the grid
spacing of the model that was used during this season
(6 km), road surfaces and bridge decks were too small
to be resolved; therefore no attempt was made to utilize
the characteristics of those types of surfaces in the
prediction. Instead, the characteristics of the general
land use in each grid area were used to drive the
numerical surface temperature predictions. Informal
evaluation of the numerical predictions of surface
temperatures from the Purdue WRF (compared with
RWIS observations) were favorable, providing Purdue
forecasters with enough confidence to use those values
when creating their forecasts, particular when consider-
ing events such as bridge deck frost and freezing fog
conditions. Formal statistical evaluation of the WRF
surface temperature forecasts is ongoing. The output
from this numerical model was routinely available to

INDOT staff via web access (currently found at http://
weather.eaps.purdue.edu/wrfdata/).

3.2 Performance Measures for Winter
Weather Forecasts

Performance measures for winter weather forecasts
were developed using Stage I winter weather analyses
(section 1) and the experimental winter weather forecast
products described in section 2. Evaluations were
performed on two sets of experimental winter weather
forecasts, statewide probabilistic winter weather fore-
casts and hourly timelines of winter weather hazards
(rain, snow, freezing rain, and icing/freezing fog) for
each INDOT district. More information about these
experimental forecast products can be found in the
previous section. Evaluation of the probabilistic winter

Figure 3.1 Example state-wide winter weather probability map issued 4 Mar 2013, valid for the midnight-midnight period of 5
Mar 2013.
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weather forecasts was done using a distributions-based
approach and using performance measures developed
using a contingency table. Evaluation of timeline
forecasts was done using only performance measures
developed using a contingency table.

3.2.1 Distributions-Based Forecast Evaluation

Distributions-based forecast evaluation is based
upon analysis of the distributions of forecasts and
observations (16) in terms of joint and conditional
probabilities. Distributions-based forecast evaluation
provides valuable insight into the performance of
forecast systems, especially when examining forecasts
that include probabilities. By denoting the set of fore-
casts as f and the corresponding observations as o, the
joint probability distribution of the forecasts and
observations can be denoted as p(f,o). As shown in
(16), the joint distribution can be factorized to
determine the frequency of occurrence of an observed
event given the forecasts, or the frequency of forecasts
given a set of observations. These are called calibration-
refinement factorization and likelihood-base rate fac-
torization, respectively. Calibration-refinement factor-
ization can be expressed mathematically by

p f ,oð Þ~p ojfð Þp fð Þ ð1Þ

where p ojfð Þ is the conditional probability of the
observations given each forecast value and p fð Þ is the
marginal distribution of the forecasts. Similarly, like-
lihood-base rate factorization can be expressed by

p f ,oð Þ~p f joð Þp oð Þ ð2Þ

where p f ,oð Þis the conditional probability of the
forecasts given each observed value and p oð Þ is the
marginal distribution of the observations.

As previously stated, distributions-based forecast
evaluation was performed only on the experimental
daily probabilistic winter weather forecasts that were
provided daily to INDOT by students at Purdue
University. Hourly ASOS observations were used to
evaluate the daily probabilistic forecasts. Observations
from ASOS were overlaid with each day’s probabilistic
forecast using ArcGIS. Probabilistic forecasts consisted
of four forecast probabilities: 0, 30, 60, and 90%. These
forecast percentages were used for distributions-
based evaluation. Any observation of winter weather
(snow, freezing rain, sleet, or freezing fog) was treated
as a ‘‘yes’’ observation. Distributions-based forecast

Figure 3.2 Example timeline forecast issued 4 Mar 2013, valid midnight-midnight 5 Mar 2013.
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evaluation was performed by comparing the frequency
of different probabilistic forecasts with corresponding
observations.

3.2.2 Performance Measures Developed Using
Contingency Tables

Typically, ‘‘yes’’ or ‘‘no’’ (dichotomous) forecasts can
be evaluated by using contingency tables. An example
of a contingency table is shown in Table 3.1. From
Table 3.1, a correct ‘‘yes’’ forecast of an observed event
(a) is known as a ‘‘hit’’; a ‘‘yes’’ forecast for an event that
did not occur in the observations (b) is a ‘‘false alarm’’;
when an event is observed but ‘‘no’’ was forecast (c) it is
a ‘‘missed event’’; a correct forecast of ‘‘no’’ (d) is called
a ‘‘correct null.’’ Using the variables (a, b, c, d) from the
contingency table, performance measures can be devel-
oped (mathematically defined in Table 3.2). Bias is the
overall correspondence between the average forecast

Figure 3.3 Example supplemental forecast map for the Mar 5–6 winter storm.

TABLE 3.1
Sample contingency table for verifying a dichotomous forecast

Observed

Yes No Total

Forecast Yes a b a + b

No c d c + d

Total a + c b + d 1
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and the average observation (17). From (18) the rest of
the performance measures are defined. Probability of
detection (POD) is the fraction of correct forecasts
divided by the total number of ‘‘yes’’ observations.
Threat score (TS) is fraction of the union of observed
and forecast areas that were corrected forecast. The
equitable threat score (ETS) is an adjustment to the
threat score that removes correct forecasts that one
would expect due to random chance. The true skill
statistic (TSS) is equal to the probability of detection
minus the probability of false detection (the ratio of
false alarms to the number of times no event was
observed). The bias-adjusted threat score (TSA) adjusts
the threat score to account for bias and is equal to the
threat score when bias is 1. The odds ratio skill score
(ODDS) is derived from the odds ratio (5ad/bc).

Dichotomous forecast verification was also per-
formed on the experimental daily probabilistic fore-
casts. Any non-zero winter weather forecast was treated
as a ‘‘yes’’ forecast of winter weather. Point ASOS
observations were used to verify forecasts. If any ‘‘yes’’
observation fell within a non-zero forecast area, it was
treated as a correct hit; a correct forecast of no winter
weather within an area with no winter weather
observations was called a correct null, and so forth
until all contingency table values were populated from
all sets of forecasts and observations. A similar
verification process was performed on the hourly
timeline forecasts (24 hour forecasts from 12 a.m. to

12 a.m. local time) made for each INDOT maintenance
district. Verification was performed for four forecast
variables, snow, freezing rain, icing/freezing fog, and
rain. Blowing snow forecasts could not be verified due
to a lack of observations. Due to sporadic ASOS
observations, verification of the timelines was done on
a daily basis instead of an hourly one. If an hourly
timeline forecast for a district included a hazard for any
part of a day and an observation of that hazard was
observed within that district for that same day,
regardless of what hour the hazard was forecast, then
the forecast was treated as a correct hit, and similarly
for each variable of the contingency table.

3.2.3 Results and Discussion

Evaluation of the experimental probabilistic winter
weather forecasts is shown in Table 3.3. The calibra-
tion-refinement factorization showed that winter
weather was observed 26.5% of the time when no
winter weather was forecast. The 30% forecast results
are even more skewed, with winter weather occurring
on 63% of the occasions when a 30% chance of winter
weather was forecast. The 60% and 90% forecast
factorizations show upward skewing as well with winter
weather observed on 81% and 95% of the times,
respectively, when forecast. Many forecasters appear to
have equated a low probability event with a ‘‘low
impact’’ event. For example, a forecaster may have been

TABLE 3.2
Performance measures derived from contingency tables. From (18)

Score Definition Range

Bias
B~

azb

azc
0ƒBƒ?

Probability of detection POD~
a

azc
0ƒPODƒ1

Threat score TS~
a

azbzc
0ƒTSƒ1

Equitable threat score ETS~
a{arand

azbzc{arand

rand~ azbð Þ
a

azcð Þ

{1

3
ƒETSƒ1

True skill statistic
TSS~

a

azc
{

b

bzd
{1ƒTSSƒ1

Bias-adjusted threat score
TSA~

azcð Þ1=B
{c1=B

azcð Þ1=B
zc1=B

B~
azb

azc

0ƒTSAƒ1

Odds ratio skill score
ODDS~

ad{bc

adzbc

{1ƒODDSƒ1

TABLE 3.3
Calibration-refinement factorization (left) and likelihood-base rate factorization (right) of daily probabilistic forecasts

Forecasts

0% 30% 60% 90% 0% 30% 60% 90%

Observations Yes (o 5 1) 0.266 0.631 0.811 0.955 0.209 0.399 0.264 0.129

N 5 306 No (o 5 0) 0.734 0.369 0.189 0.045 0.657 0.266 0.070 0.007
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confident that a low impact winter weather event would
occur, but he or she predicted a 30% of occurrence since
the event was expected to cause only minor incon-
veniences to motorists. These issues will have to be
addressed in upcoming winter weather forecasts.

Table 3.4 shows several performance measures com-
puted by contingency table value for the statewide pro-
bability forecasts. Overall, the probabilistic forecasts

were unbiased (near 1), implying that forecasters did
not over-forecast winter weather. However, as the
previous results showed, forecasters did struggle in
assigning reliable probabilistic forecast values, with
reliable probabilities showing observed frequencies near
the forecast probabilities.

Verification results for each district’s daily timeline
forecasts are shown in Tables 3.5 through 3.10. Rain
and snow forecast forecasts for districts in central and
northern Indiana showed a slight low bias in rain and
snow forecasts, while snow and rain forecasts for dis-
tricts in southern Indiana were near 1. Freezing rain
forecasts in all districts outside of Seymour and Vincen-
nes showed a severe high bias, to the point where POD
was 1 for the Crawfordsville and Vincennes districts.

TABLE 3.4
Performance measures for statewide daily probabilistic forecasts

Bias POD TS ETS TSS TSA ODDS

Score 1.079 0.787 0.608 0.291 0.449 0.614 0.757

TABLE 3.5
Performance measures for daily timeline forecasts for the Fort
Wayne district

District: Fort Wayne; Hazard: Rain

Bias POD TS TSS TSA ODDS

Score 0.833 0.733 0.667 0.669 0.660 0.951

District: Fort Wayne; Hazard: Freezing Rain

Bias POD TS TSS TSA ODDS

Score 0.833 0.470 0.348 0.423 0.368 0.901

District: Fort Wayne; Hazard: Snow

Bias POD TS TSS TSA ODDS

Score 0.772 0.700 0.650 0.582 0.65 0.892

District: Fort Wayne; Hazard: Freezing Fog

Bias POD TS TSS TSA ODDS

Score 0.813 0.125 0.080 0.040 0.080 0.241

TABLE 3.6
Performance measures for daily timeline forecasts for the La
Porte district

District: La Porte; Hazard: Rain

Bias POD TS TSS TSA ODDS

Score 0.860 0.845 0.656 0.654 0.651 0.938

District: La Porte; Hazard: Freezing Rain

Bias POD TS TSS TSA ODDS

Score 0.824 0.958 0.538 0.956 1.000 1.000

District: La Porte; Hazard: Snow

Bias POD TS TSS TSA ODDS

Score 0.774 0.847 0.720 0.720 0.723 0.921

District: La Porte; Hazard: Freezing Fog

Bias POD TS TSS TSA ODDS

Score 0.8125 0.125 0.080 0.053 0.097 0.300

TABLE 3.7
Performance measures for daily timeline forecasts for the
Crawfordsville district

District: Crawfordsville; Hazard: Rain

Bias POD TS TSS TSA ODDS

Score 0.943 0.808 0.712 0.735 0.704 0.963

District: Crawfordsville; Hazard: Freezing Rain

Bias POD TS TSS TSA ODDS

Score 4.000 1.000 0.250 0.938 1.000 1.000

District: Crawfordsville; Hazard: Snow

Bias POD TS TSS TSA ODDS

Score 0.977 0.735 0.590 0.614 0.590 0.905

District: Crawfordsville; Hazard: Freezing Fog

Bias POD TS TSS TSA ODDS

Score 1.429 0.286 0.592 0.229 0.117 0.737

TABLE 3.8
Performance measures for daily timeline forecasts for the
Greenfield district

District: Greenfield; Hazard: Rain

Bias POD TS TSS TSA ODDS

Score 0.780 0.723 0.694 0.690 0.684 0.970

District: Greenfield; Hazard: Freezing Rain

Bias POD TS TSS TSA ODDS

Score 2.200 0.800 0.333 0.747 0.350 0.972

District: Greenfield; Hazard: Snow

Bias POD TS TSS TSA ODDS

Score 0.790 0.667 0.594 0.578 0.602 0.908

District: Greenfield; Hazard: Freezing Fog

Bias POD TS TSS TSA ODDS

Score 0.785 0.143 0.087 0.069 0.098 0.353
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However, in the Seymour district false alarms were
numerous, lowering all skill scores. Freezing fog fore-
casts clearly performed the worst, with several skill
scores near zero for multiple districts. Some of the low
scores could be due to a paucity of ASOS observations;
forecasts for freezing fog and icing were often issued
when bridge deck frost formation was expected, the
airport observations will not provide information to
indicate if road surface frost actually occurred. Output
from Purdue’s Weather Research and Forecasting
(WRF) model were used in forecasting icing and freezing
fog, and more information about the numerical surface
temperature forecasts can be found in section 2.1.

Overall, rain and snow forecasts were shown to be
the most skillful forecast produced for INDOT, with

freezing rain forecasts marginally. Some caution
should be taken into making inferences on forecasts
based on one skill score alone. Most skill scores are
sensitive to event frequency and bias. Scores are
likely skewed for highly biased forecasts (e.g. freezing
rain). Additionally, rain and snow were far more
common than freezing rain and freezing fog/icing
observations. This skews most skill scores lower for
freezing rain and icing because they were the rarer of
the four forecast hazards.

4. CONCLUSIONS

The objectives for this project were to provide
INDOT with more detailed forms of weather informa-
tion, for both monitoring and forecasting purposes.
Several ‘‘state-of-the-art’’ weather analyses were evalu-
ated and compared against surface station observations
to determine which system would generate weather hour
estimates that were both accurate and spatially detailed.
The RTMA-based analyses underestimated weather
hours and also contained analysis artifacts (circular
patterns) that were unrealistic. The NMQ-based ana-
lyses over-estimated weather hours, especially within
,75 miles of a radar site, except for a narrow circle
centered at each NWS radar location. The NWS dual-
pol radar products were found to be immature with the
precipitation type classification algorithm containing
several major errors. The RAP-based weather hour
analyses matched up well against the surface station
data and also provided more realistic spatial detail.
These analyses are recommended for use for after-action
review both for previous and upcoming winter seasons.

Experimental winter weather forecasts were provided
to INDOT by Purdue students (under the supervision of
Prof. Baldwin). These forecast products were evaluated
and were found to be skillful and unbiased in predicting
the occurrence of snow in particular. Purdue students
(and professors) gained a rich learning experience as a
result of their interaction with their INDOT ‘‘custo-
mers,’’ it is recommended that Purdue continues to
communicate this kind of weather forecast information
to INDOT for upcoming winter seasons. High-resolu-
tion numerical weather prediction model output was
also incorporated into these experimental forecast
products. These numerical forecasts were found to be
very useful by the Purdue student forecasters. It is
recommended that Purdue continue to evaluate and
develop numerical weather forecasts for road weather
purposes, working with INDOT’s weather vendor to
provide direct access to this alternate source of forecast
information, resulting in increased confidence and
improved decision-making for winter maintenance.

5. RECOMMENDATIONS

In order to take advantage of the detailed spatial
information contained in the radar-based estimates of
precipitation, it is recommended that INDOT begin to
use the RAP-based analysis variables in their winter

TABLE 3.10
Performance measures for daily timeline forecasts for the
Seymour district

District: Seymour; Hazard: Rain

Bias POD TS TSS TSA ODDS

Score 1.086 0.897 0.754 0.697 0.780 0.944

District: Seymour; Hazard: Freezing Rain

Bias POD TS TSS TSA ODDS

Score 3.667 0.333 0.077 0.242 0.055 0.667

District: Seymour; Hazard: Snow

Bias POD TS TSS TSA ODDS

Score 1.059 0.794 0.628 0.680 0.633 0.936

District: Seymour; Hazard: Freezing Fog

Bias POD TS TSS TSA ODDS

TABLE 3.9
Performance measures for daily timeline forecasts for the
Vincennes district

District: Vincennes; Hazard: Rain

Bias POD TS TSS TSA ODDS

Score 1.102 0.898 0.746 0.663 0.777 0.933

District: Vincennes; Hazard: Freezing Rain

Bias POD TS TSS TSA ODDS

Score 5.500 1.000 0.182 0.917 1.000 1.000

District: Vincennes; Hazard: Snow

Bias POD TS TSS TSA ODDS

Score 1.069 0.655 0.463 0.507 0.461 0.832

District: Vincennes; Hazard: Freezing Fog

Bias POD TS TSS TSA ODDS

Score 1.289 0.574 0.333 0.523 0.318 0.926
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weather hour calculations. Purdue researchers will
provide these data in a form that can easily be utilized
in INDOT’s GIS system, which will allow INDOT staff
to use the more detailed information in their analysis of
costs of winter maintenance operations. This detailed
information will provide a more precise representation
of the actual weather conditions as they varied within
each district, from unit to unit. By providing this
information for the past several years, INDOT will be
able to go back and analyze previous winter seasons,
increasing the opportunities for determining which
areas of the state are providing the most cost-effective
service.

It is recommended that INDOT continue to utilize
the winter weather forecasting information provided by
Purdue students, while also incorporating the numerical
forecast information from the Purdue WRF model.
This additional forecast information should be used in
addition to the various weather forecasting sources that
are currently utilized by INDOT staff, including
weather vendors, local media, web sites, and National
Weather Service products. In the field of weather
prediction, we find that a consensus-based forecast
from multiple sources outperforms those from any
single individual source. The student-generated fore-
casts are designed for direct use in INDOT winter
maintenance decision-making, taking into account the
forecast information available from multiple sources. In
order to improve the access and ease-of-use of the
numerical forecast information from the Purdue WRF
model, it is recommended that INDOT encourage their
weather vendor to collaborate with Purdue researchers
to bring the numerical information directly into their
systems, allowing INDOT direct access to that infor-
mation via their MDSS.

6. EXPECTED BENEFITS, DELIVERABLES,
IMPLEMENTATION, AND COST SAVINGS

The main deliverables from this project are new,
more detailed datasets for analyzing winter weather
hours across the state. These data will be provided to
INDOT in a form that will allow easy implementation
into INDOT GIS analysis systems. We recommend that
INDOT begin using the more detailed analysis datasets
to analyze the performance of maintenance operations
for upcoming and previous winter seasons. Results
from evaluation of the new dual-pol radar products
have shown that the algorithmic classifications of
precipitation types are often erroneous. These products
are immature in their development; we recommend that
INDOT delay implementation of the dual-pol radar
products until further improvements can be implemen-
ted by the National Weather Service. Another main
deliverable from this project is numerical forecast
information from the Purdue WRF model; we recom-
mended that INDOT encourage their weather vendor
to collaborate with Purdue researchers to bring the
numerical information directly into their systems,
allowing INDOT direct access to that information via

their MDSS. A third deliverable was student-generated
weather forecasts that were designed for direct use in
INDOT winter maintenance decision-making, taking
into account the forecast information available from
multiple sources. One of the main results from the
evaluation of Purdue’s experimental weather forecasts
was that these forecasts were, on average, unbiased in
terms of the frequency of occurrence of snow at the
district level. Unbiased forecasts, or forecasts that do
not either over-forecast or under-forecast the frequency
of winter weather conditions, should help to minimize
unnecessary costs due to extra man hours/overtime.

Many costs associated with winter maintenance
cannot be avoided, a larger number of weather hours
will require and larger number of hours spent fighting
snow and ice. However, lessons can be learned and best
practices can be implemented from unit-to-unit. With
more accurate and precise estimates of winter weather
hours, analysis of costs per lane mile per weather hour
will improve, allowing the potential more uniform (and
cost-effective) operations state-wide. While it is unrea-
sonable to expect that every sub-district could reach a
goal of uniform costs per lane mile per weather hour,
one can assume that the sub-districts currently showing
costs per lane mile per weather hour above the state
average could reduce their costs as a result of applying
those best practices learned from more cost-effective
sub-districts. Using the current INDOT weather hour
estimate, if those above average sub-districts were to
reduce their costs a point halfway in between their
current (2012–2013) expenses and the overall state
average cost per lane mile per weather hour, the overall
savings would be in the 3–4% range over the course of
an entire winter season. These estimates will change if
more detailed weather hour estimates are used, since
these will provide a more accurate local estimation of
the weather conditions at the sub-district and unit level.
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APPENDIX A: DATES WITH MISSING DATA FILES
FOR STAGE II WINTER WEATHER HOUR ANALYSES

Tables A.1, A.2, and A.3 list the date and time (YYYYMMDD HHmm) of missing data files from each data source for the past three
winter seasons.

TABLE A.1
RAP/RUC

2010–2011 2011–2012 2012–2013

20101110 2000

20101110 2100

20101110 2200

20101110 2300

20101111 0000

20101111 0100

20101111 0200

20101111 0300

20101111 0400

20101111 0500

20101111 0600

20101111 0700

20101111 0800

20101111 0900

20101111 1000

20101111 1100

20101111 1200

20101111 1300

20101111 1400

20101111 1500

20101111 1600

20101111 1700

20101111 1800

20101111 1900

20101111 2000

20101111 2100

20101111 2200

20101111 2300

20101112 0000

20101112 0100

20101112 0200

20101112 0300

20101112 0400

20101112 0500

20101112 0600

20101112 0700

20101112 0800

20101112 0900

20101112 1000

20101112 1100

20101112 1200

20101112 1300

20101112 1400

20101112 1500

20101112 1600

20101112 1700

20101112 1800

20101112 1900

20101112 2000

20101112 2100

20101112 2200

20101112 2300

20101114 0000

20101114 0100

20101114 0200

20101114 0300

20101114 0400

20101114 0500

20101114 0600

20101114 0700

20101114 0800

20101114 0900

20101114 1000

20101114 1100

20101114 1200

20101114 1300

20101114 1400

20101114 1500

20101114 1600

20101114 1700

20101114 1800

20101114 1900

20101114 2000

20101114 2100

20101114 2200

20101115 1600

20110227 0000

20110227 0100

20110227 0200

20110227 0300

20110227 0400

20110227 0500

20110227 0600

20110227 0700

20110227 0800

20110227 0900

20110227 1000

20110227 1100

20110227 1200

20110227 1300

20110227 1400

20110227 1500

20110227 1600

20110227 1700

20110227 1800

20110227 1900

20110227 2000

20110227 2100

20110227 2200

20110227 2300

20110301 2300

20110302 2000

20110302 2100

20110302 2200

20110303 2300

20110304 0000

20110304 0100

20110304 0200

20110304 0300

20110304 0400

20110304 0500

20110304 0600

20110304 0700

20110304 0800

20110304 0900

20110304 1000

20110304 1100

20110304 1200

20110304 1300

20110304 1400

20110304 1500

20110304 1600

20110304 1700

20110304 1800

20110304 1900

20110304 2000

20110304 2100

20110304 2200

20110304 2300

20110305 0000

20110305 0100

20110305 0200

20110305 0300

20110305 0400

20110305 0500

20110305 0600

20110305 0700

20110305 0800

20110305 0900

20110305 1000

20110305 1100

20110305 1200

20110305 1300

20110305 1400

20110305 1500

20110305 1600

20110305 1700

20110305 1800

20110305 1900

20110305 2000

20110305 2100

20110305 2200

20110305 2300

20110306 0000

20110306 0100

20110306 0200

20120105 1800

20120105 1900

20120105 2000

20120105 2100

20120105 2200

20120105 2300

20120107 0000

20120107 0100

20120107 0200

20120107 0300

20120107 0400

20120107 0500

20120107 0600

20120107 0700

20120107 0800

20120107 0900

20120107 1000

20120107 1100

20120107 1200

20120107 1300

20120107 1400

20120107 1500

20120107 1600

20120107 1700

20120107 1800

20120107 1900

20120107 2000

20120107 2100

20120107 2200

20120107 2300

20120109 0000

20120109 0100

20120109 0200

20120109 0300

20120109 0400

20120109 0500

20120109 0600

20120109 0700

20120109 0800

20120109 0900

20120109 1000

20120109 1100

20120109 1200

20120109 1300

20120109 1400

20120109 1500

20120109 1600

20120109 1700

20120109 1800

20120109 1900

20120109 2000

20120109 2100

20121101 2300

20121123 2300

20121128 2300

20121225 2300

20130120 2300

20130202 2300

20130322 2300

20130327 2300
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TABLE A.1
(Continued)

2010–2011 2011–2012 2012–2013

20101113 0000

20101113 0100

20101113 0200

20101113 0300

20101113 0400

20101113 0500

20101113 0600

20101113 0700

20101113 0800

20101113 0900

20101113 1000

20101113 1100

20101113 1200

20101113 1300

20101113 1400

20101113 1500

20101113 1600

20101113 1700

20101113 1800

20101113 1900

20101113 2000

20101113 2100

20101113 2200

20101113 2300

20110302 2300

20110303 0000

20110303 0100

20110303 0200

20110303 0300

20110303 0400

20110303 0500

20110303 0600

20110303 0700

20110303 0800

20110303 0900

20110303 1000

20110303 1100

20110303 1200

20110303 1300

20110303 1400

20110303 1500

20110303 1600

20110303 1700

20110303 1800

20110303 1900

20110303 2000

20110303 2100

20110303 2200

20110306 0300

20110306 0400

20110306 0500

20110306 0600

20110306 0700

20110306 0800

20110306 0900

20110306 1000

20110306 1100

20110306 1200

20110306 1300

20110306 1400

20110306 1500

20110306 1600

20110306 1700

20110306 1800

20110306 1900

20110306 2000

20110306 2100

20110306 2200

20110306 2300

20110308 0400

20110309 0400

20110313 0400

20120109 2200

20120109 2300

20120306 0900

20120306 1000

20120306 1100

20120306 1200

20120306 1300

20120306 1400

20120306 1500

20120306 1600

20120306 1700

20120322 2200
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TABLE A.2
RTMA

2010–2011 2011–2012 2012–2013

20101220 0500

20101220 0600

20101220 0700

20101220 0800

20101220 0900

20101220 1000

20101220 1100

20101220 1200

20101220 1300

20101220 1400

20101220 1500

20101220 1600

20101220 1700

20101220 1800

20101222 1800

20110114 0500

20110114 0600

20110114 0700

20110114 0800

20110114 0900

20110114 1000

20110114 1100

20110114 1200

20110116 1000

20110116 1100

20110116 1200

20110116 1300

20110116 1400

20110116 1500

20110116 1600

20110116 1700

20110116 1800

20110116 1900

20110116 2000

20110116 2100

20110116 2200

20110116 2300

20110117 0000

20110117 0100

20110117 0200

20110117 0300

20110117 0400

20110117 0500

20110117 0600

20110117 0700

20110117 0800

20110117 0900

20110117 1000

20110117 1100

20110117 1200

20110117 1300

20110122 0200

20110122 0300

20110122 0400

20110122 0500

20110122 0600

20110122 0700

20110122 0800

20110122 0900

20110122 1000

20110122 1100

20110122 1200

20110122 1300

20110122 1400

20110122 1500

20110122 1600

20110122 1700

20110122 1800

20110122 1900

20110122 2000

20110122 2100

20110122 2200

20110122 2300

20110128 1000

20110128 1100

20110128 1200

20110128 1300

20110128 1400

20110128 1500

20110128 1600

20110128 1700

20110128 1800

20110128 1900

20110128 2000

20110128 2100

20110128 2200

20110128 2300

20110129 0000

20110129 0100

20110129 0200

20110129 0300

20110129 0400

20110129 0500

20110129 0600

20110129 0700

20110129 0800

20110129 0900

20110129 1000

20110129 1100

20110129 1200

20110129 1300

20110129 1400

20110129 1500

20110129 1600

20110129 1700

20110129 1800

20110129 1900

20110129 2000

20110129 2100

20110129 2200

20120130 0000

20120130 0100

20120130 0200

20120130 0300

20120130 0400

20120130 0500

20120130 0600

20120130 0700

20120130 0800

20120130 0900

20120130 1000

20120130 1100

20120130 1200

20120130 1300

20120130 1400

20120130 1500

20120130 1600

20120130 1700

20120130 1800

20120130 1900

20120130 2000

20120130 2100

20120130 2200

20120130 2300

20120131 0000

20120131 0100

20120131 0200

20120131 0300

20120131 0400

20120131 0500

20120131 0600

20120131 0700

20120131 0800

20120131 0900

20120131 1000

20120131 1100

20120131 1200

20120131 1300

20120131 1400

20120131 1500

20120131 1600

20120131 1700

20120131 1800

20120131 1900

20120131 2000

20120131 2100

20120131 2200

20120131 2300

20121211 1900

20121211 2000

20121211 2100

20121211 2200

20121211 2300
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TABLE A.3
NMQ

2012–2013

20121214 0800

20121214 0900

20121214 1000

20121214 1100

20121214 1200

20121214 1300

20121214 1400

20121214 1500

20121214 1600

20121214 1700

20121214 1800

20121214 1900

20121214 2000

20121214 2100

20121217 2200
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APPENDIX B. VINCENTY DIRECT FORMULA

DESCRIPTION

Vincenty (12) demonstrates the two iterative formulae for both
the direct and inverse geodetic solutions. Both equations assume
the Earth is an oblate spheroid. The method presented in
Table B.1 is the direct method; this formula computes the latitude
and longitude of a point given the location of a starting point, the
distance from the starting point, and the azimuth between the two
points.

FORMULATION (FOLLOWING VINCENTY (12))

tanU1~ 1{fð ÞtanQ1

s1~tan{1 tanU1

cosa1

� �

sina~cosU1sina1

cos2a~ 1{sinað Þ 1zsinað Þ

u2~cos2a
a2{b2

a2

� �

A~1z
u2

16384
4096zu2 {768zu2 320{175u2

� �� �� 	

B~
u2

1024
256zu2 {128zu2 74{47u2

� �� �� 	

Using an initial value of s~
s

bA
, the following equations are

iterated until no significant change in s occurs. In this case,

however, the equations are iterated a fixed number of times (here,
twenty).

2sm~2s1zs

Ds~Bsins cos 2smð Þf

z
1

4
B coss½ {1z2cos2 2smð Þ

�

{
1

6
Bcos 2smð Þ {3z4sin2s

� �
{3z4cos2 2smð Þ
� ��
�

s~
s

bA
zDs

After iteration is completed,

j2~tan{1 sinU1cosszcosU1sinscosa1

1{fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2az sinU1sins{cosU1cosscosa1ð Þ2

q
0
B@

1
CA

l~ tan{1 sinssina1

cosU1coss{sinU1 sin scosa1

� �

C~
f

16
cos2a 4zf 4{3cos2a

� �� �

L~l{ 1{Cð Þ
f sina szCsins cos 2smð ÞzCcoss {1z2cos2 2smð Þ

� �� �� 	

a2~tan{1 sina

{sinU1 sin szcosU1cosscosa1

� �

TABLE B.1
Variable Notation

Symbol Description

a, b Major length of ellipsoidal Earth (radius at equator)

A5 6378137.0 m in WGS-84

f Flattening of ellipsoid

f ~ a{bð Þ=a

b Length of minor axis of ellipsoid (radius at Earth’s poles)

j1, j2 Geodetic latitude, north of the equator

L Difference in longitude between the two points

s Length of the geodesic (i.e., ellipsoidal distance between the two points)

a1, a2 Forward azimuths at each point (clockwise from north)

a Azimuth at the equator

u2

cos2 a
a2{b2

b2

� �

U Reduced latitude

tan U~ 1{fð Þ tan Q

l Difference in longitude on the auxiliary sphere

s Angular distance on the sphere between two points (arc length)

s1 Angular distance on the sphere between the equator and point 1

sm Angular distance on the sphere from the equator to the midpoint of the line between the two points
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About the Joint Transportation Research Program (JTRP)
On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State 
Highway Commission to cooperate with and assist Purdue University in developing the best 
methods of improving and maintaining the highways of the state and the respective counties 
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) 
to reflect the state and national efforts to integrate the management and operation of various 
transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially 
and was regularly producing technical reports. Over 1,500 technical reports are now available, 
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue 
University and what is now the Indiana Department of Transportation.

Free online access to all reports is provided through a unique collaboration between JTRP and 
Purdue Libraries. These are available at: http://docs.lib.purdue.edu/jtrp

Further information about JTRP and its current research program is available at:
http://www.purdue.edu/jtrp

About This Report  
An open access version of this publication is available online. This can be most easily located 
using the Digital Object Identifier (doi) listed below. Pre-2011 publications that include color 
illustrations are available online in color but are printed only in grayscale. 

The recommended citation for this publication is: 
Baldwin, M., K. Hoogewind, D. Snyder,  M. Price, and R. J. Trapp. Assessment and Recommenda-
tions for Using High-Resolution Weather Information to Improve Winter Maintenance Opera-
tions. Publication FHWA/IN/JTRP-2013/22. Joint Transportation Research Program, Indiana 
Department of Transportation and Purdue University, West Lafayette, Indiana, 2013. doi: 
10.5703/1288284315224.
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